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The applicability of the Gibbs-DiMarzio (G-DM) theory of the glass transition (To) is quantitatively 
evaluated for PS, PVC, PctMS and PM MA. The analysis was conducted under the assumption that both 
the inter-/intramolecular energy ratio (r) and the effective chain segment density (n) remain constant 
while the fractional free volume at Tg(V0) varies as a function of the reciprocal degree of polymerization 
(103/#). Based upon reduced parametric plots of To/T ~ versus 103/p, the results showed that the G-  
DM equations were satisfactory for PS and PVC but unsuccessful in the cases of P~MS and PMMA. For 
the former cases the analysis indicated that when 0.015 ~< Vow< 0.045 optimum agreement occurred at 
n= 1.80, r = 10.5 and n= 1.36, r=0.95, respectively. Although potential n, r values were obtained for 
P~t MS when the allowable V 0 range was expanded to 0.010-0.050, none of these combinations satisfied 
all of the analytical requirements. No agreement for the PMMA data sets could be obtained even when 
this less stringent V o criterion was adopted. Attempts to improve this situation by incorporating 'beads' 
and "flexes' into the statistical mechanical equations are also considered. 

(Keywords: Gibbs-DiMarzio theory; poly-=-methylstyrene; poly(methyl methacrylate); poly- 
styrene; poly(vinyl chloride); glass transition) 

INTRODUCTION 

Over the past 30 years a number of theories have been 
developed to account for the variation in the glass 
transition temperature (Tg) of polymeric materials as a 
function of molecular weight (MW). Three of the most 
notable of these approaches have included the straight 
line technique of Fox and Flory ~ and the statistical 
mechanical theories of Gibbs 2 and Gibbs-DiMarzio 3 
(G-DM). Because of the universal applicability claimed 
for the latter approach, the G-DM theory applicability 
claimed for the latter approach, the G-DM theory has 
received considerable attention 4-7. 

Recently Kusy and Greenberg 6 introduced a reduced 
variables technique which simplified the use of the rather 
unwieldy statistical mechanical equations. Subsequent 
expansion of this work in terms of the inter-/intra- 
molecular energy ratio (r) and the fractional free volume 
at Tg(Vo) explicitly characterized the functional 
dependence of each of these parameters on M W  8. In 
addition, an index (n) which related the effective number 
average of chain atom segments (E) per degree of poly- 
merization (/~) was incorporated into the reduced variable 
equations in order to better account for structural 
differences among polymers. By assigning reasonable 

* Presented, in part, at the 5th International Symposium on Analytical 
Calorimetry, American Chemical Society, Seattle, Washington, March, 
1983. 

values to the parameters n, r, and V 0, the theoretical 
predictions of the statistical mechanical equations were 
compared with Tg data obtained from the literature for 
four well documented polymers. Qualitative assessment 
of these results suggested that the G-DM theory 
adequately described the PMMA, PS and PVC cases but 
was unsuccessful for P0tMS. 

Because of the complexities inherent in a theory which 
incorporates multifunctional dependencies, further 
examination has indicated that a qualitative evaluation is 
not sufficient to establish the validity of a particular 
approach. Recently a statistical analysis technique was 
utilized in a comparison of the Gibbs theory with experi- 
mental results obtained for PMMA, and the advantages 
of such a quantitative determination were clearly 
demonstrated 9. The present effort applies these 
quantitative analytical techniques to the PMMA, PS, 
PVC and P~tMS data sets in order to make an unbiased 
assessment of the G-DM theory. 

THEORETICAL DEVELOPMENT 

The system of equations which comprises the G-DM 
theory has been presented in detail elsewhere a'6'a. 
However, the approach can be summarized by con- 
sideration of the following two equations of state: the 
entropy equation (1) and the PVT equation at 
atmospheric pressure (2), i.e., 
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Here fl is a dimensionless parameter equal to -s/kTg 
where ~ is the flex energy and k is Boltzmann's constant. In 
accordance with the assumption that Vo decreases 
monotonically with decreasing M W, equations (1)_and (2) 
can be solved iteratively by maintaining £ = n P  and r 
constant while simultaneously varying Vo until a unique fl 
derived from equation (2) satisfies equation (1). This 
procedure is repeated for different combinations o f£  = n/5 
and r. 

Using the reduced variables method, a plot of TJT~® vs. 
/5-1 generates a family of curves each corresponding to a 
specific value of n (c.f Figure 1). Each value of n is in turn 
plotted for the cases where r=0.8,  1.0 and 1.2. These 
results suggest that large variations in r have relatively 
little effect on the family of curves; however, this latitude is 
not possible unless Vo is allowed to float over rather wide 
limits as a function of P-~ (c.f. Figure 2). Close exam- 
ination of Figures 1 and 2 indicates that if Vo is to be 
restricted to reasonable limits within the range 
1 ~< 10a//5 ~< 100 then only certain combinations ofn and r 
can be considered (c.f. Figure 3). For example, if n = 1.4 
and Vo is to be kept within 0.015-0.045, then r must 
remain within 0.94-1.07. If these restrictions are som- 
ewhat relaxed such that 0.010 ~< Vo ~< 0.050, then under the 
same conditions (i.e., n = 1.4) r may range from 0.89-1.23. 
Unless otherwise indicated, only n-r combinations cor- 
responding to 0.015 ~<Vo~<0.045 will be utilized in the 
comparison which follow. 

5o \ + , \  

IO=IP 

Figure 1 Reduced variables plot indicating the dependence of 
the glass transition (To) upon the logarithmic reciprocal degree of 

1 polymerization (P ) -  as a function of constant values of the ratio 
of hole energy to flex energy (r=O.8, 1.0 and 1.2) and number 
average of chain atom segments per P (n=0.5, 1, 2, 3; 4, 6, 10 
and 25). The relationships assume any constant value of e and 
require the variation in V o indicated in Figure 2 (cf. Ref. 8) 
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Figure 2 Relationship between the parameter V 0 and ( p ) - I  as 
determined from equations 1 and 2. Values for r and ,~ correspond 
to those indicated in Figure 1 (cf. Ref. 8) 

0.8 1.2 1.6 
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Figure 3 Interrelationship among n,/" and V 0 as determined 
from equations 1 and 2. Cross-hatched region indicates n--r 
combinations for which 0.015 ~< V 0 ~<0.045. Stippled area 
designates the 0.010~< V0~<O.050 region 

2.0 

RESULTS 

The details of the statistical analysis technique have been 
discussed in Ref. 9. The method utilizes a transformation 
of variables and a linear regression of the differences 
between thepredicted and experimental values (~) as a 

11o function of P -  . If the theory perfectly described the 
data, then all of the 6 values would be zero and both the 
slope and intercept of the resulting regression line would 
also equal zero (null hypothesis) H. Since in general this is 
not the case, the F statastic is utilized to test the null 
hypothesis (Ho) at the p=0.05 level. If Ho cannot be 
rejected, the theory is regarded as having fit the data set 
for a particular combination of n and r. 

The first step in the procedure is to obtain F vs. n curves 
for applicable values of r. A typical plot for the case of PS 
is shown in Figure 4a. Here the four parabolas correspond 
to r=0.95, 1.00, 1.05 and 1.10, respectively. If all 
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Figure 4 F-test results as a function of n and r using the G-DM theory: (a) for PS. (b) for PVC. The dashed line portion of the parabola 
denotes particular n-r values which do not satisfy 0.015 ~< V o ~< 0.045 but which lies within the range 0.010 ~< V o ~< 0.050 (cf. Figure 3), (c) 
for P=MS. The dotted line represents values of n-r for which 0.010> Vo> 0,050. (d) for PMMA 
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intervening values of r were plotted, the resulting curve 
would take the form of a single band bounded by the 
values for r =  0.95 and r =  1.10. The dashed line at F =  3.1 
indicates the critical level, p = 0.05, which depends upon 
the number of points in the data set. The best fit between 
the predicted and experimental values is assumed to occur 
at the minimum value of F, i.e., at the vertex of the 
parabola. Based on this criterion, the results indicate that 
for PS the best fit occurs at two points: n =  1.80, r= 1.05 
and n = 1.82, r =  1.10. 

Similar plots for PVC, PctMS and PMMA are 
presented in Figures 4b, c and d, respectively. Here a 
dashed line portion of the parabola corresponds to n-r 
combinations which lie outside of the 0.015 ~< Vo ~<0.045 
boundaries but are within the 0.010~<V0 ~<0.050 region 
(e.f. Figure 3). For the case of PVC the results demonstrate 
that n-r combinations of 1.36-0.95, 1.37-1.00 and 
1.38-1.05 would all provide equally acceptable fits to the 
data. For P~MS the best fit is taken at n = 0.77, r = 0.9 for 
which 0.010~< Vo ~<0.050. For PMMA the vertices of the 
two parabolas do not fall below the p=0.05 line; there- 
fore, Ho must be rejected because no combination of n and 
r will allow the G - D M  theory to describe the data. 

A necessary condition for the use of this statistical 
methodology is that the data points not be preferentially 
distributed about the regression line 1°. In order to verify 
that this requirement is met, a scatter diagram must be 
plotted for each of the polymer data sets for which H0 was 
accepted. Typical results for PS are shown in Figure 
512 -20. Here the residuals (6) are plotted as a function of 
103//~ for the 'best fit' case of n = 1.80 and r =  1.05 as 
determined from Figure 4a. The two salient features of this 

P. Kusy 

diagram are that the regression line does approximate the 
equation 6 = 0  and that the individual data points are 
indeed reasonably distributed around the regression line. 
Similar statements apply to the corresponding diagram 
for PVC in which n =  1.36 and r=0.95 (e.f. Figure 6) 21. 

The situation is much different for the case of P~MS in 
which n = 0.77 and r=0.922'23. Examination of Figure 7 
indicates that the distribution is extremely skewed such 
that for 1 ~< 103/5~< 10 the data lies almost entirely above 
the regression line whereas for 103//5 i> 10 the converse is 
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Figuee 6 Scatter diagram for PVC using the G - D M  theory wi th 
n=1.36 and r=0.95 wi th  data from Pezzin eta/. 21 ([7) 
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Figure 5 Scatter diagram for PS using the G-DM theory with n=1.80 and r=1.05: A, Enns et alfl2; A, Fox and Flory13; <:and 
:", Glandt et aL on blends14; /k, Krause and Iskandar15; ~k, Richardson and SavilllS; A, Rudin and Burgin17; ,~ and ,~, Stadnicki et al?S; 
A, Ueberreiter and Kanig19; and ,:',, Ueberreiter and Kanig on blends 2° 
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true. Therefore, despite the nominal fit suggested by 
Figure 4c, the violation of the normal distribution require- 
ment invalidates the acceptance of Ho (c.f. Ref. 9). 

DISCUSSION 

Based upon the results of the statistical analysis the 
G - D M  theory can be regarded as satisfactory for PS and 
PVC but unsuccessful for P=MS and PMMA. The 
necessity for such a quantitative evaluation becomes 
apparent when the information contained in the F-n 
curves (c.f. Figure 4) and the scatter diagrams (c.f. Figures 
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Figure 7 Scatter diagram for P=MS using the G -DM theory 22 
with n=0.77 and r=0.9 with data from Cowie and Toporowski 
on atactic (A )  and syndiotactic (A )  polymers and Malhotra et 
al. 23 ( &)  

5-7) is presented in a reduced variables format. These 
plots are shown in Figures 8-11 where the individual data 
points are superposed by a theoretical curve derived for 
the 'best fit' situation for each of the four polymers. For  
the case of P MMA  this is taken at n =  1.2, r =  1.0 (c.f. 
Figure 4d) 24- 3o. (This does represent the best fit sutation 
though it does not meet the p t> 0.05 criterion.) 

Visual examination of Figures 8 and 9 would indeed 
suggest that there is good agreement between the theory 
and the data. However, inspection of Figures 10 and 11 
would prompt a similar judgment even though a 
statistical analysis would not support this conclusion. 
While this strongly suggests that opinions concerning the 
applicability of any T 8 vs. M W theory should be based 
upon an unbiased quantitative technique, some cau t ion  
must be exercised in the use of such methodology 
inasmuch as the conclusions drawn are only as good as 
the information on which they are based. As previously 
described, the current data sets include all published 
results for both pure polymers and blends irrespective of 
tacticity, test methodology, physical form or thermal 
history s*. Figures 8-11 indicate that each of the data sets 
contains a substantial amount of scatter. The relative 
contributions of each of the above mentioned factors to 
the overall variation cannot presently be detezmined. 
Indeed the relative importance of each of these factors 
may vary for different polymers. Nonetheless these contri- 
butions should be established since such irfformation 
could prove critical with regard to the acceptance or 
rejection of a particular theoretical approach. 

* If glass transition temperature measurements were more accurate, 
then differences would likely be observed between several of these 
factors, including tacticity. At present, however, the precision of the 
measurements does not warrant further discrimination 
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Reduced variables plot for PS. Curve represents solution for equations 1 and 2 with n=1.80 and r=1.05 (Figures 4 and 8) 
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Figure 9 Reduced variables plot for PVC. Curve represents 
solution for equations 1 and 2 wi th n=1 .36  and r=0.95 
(cf. Figures 4b and 6) 
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F igu re  10 Reduced variables plot for P~MS. Curve represents 
solut ion for equations 1 and 2 wi th n=0 .77  and r--0.9 (Figures 
4c and 7) 

The present results have been evaluated under the 
assumption that r remains constant while V0 varies as a 
function of MW. This situation is in agreement with an 
iso-viscosity viewpoint 31. However from the standpoint 
of the iso-free volume theories one could argue for a 
constant Vo and variable r 32. While the same analytical 
techniques could be utilized to obtain solutions within the 
constraints of the latter assumption, there is a strong basis 
for taking the former approach a1,3a'34. Unfortunately 
relatively little information is available concerning the 
dependence of Vo on MW. For PS measured values of Vo 
over a wide range of M W  have been reported by 
Williams 33. Starting with this same data set, Miller 31 
subsequently presented somewhat different V0 values such 
that the two sets differ by a constant amount. This 
situation is shown in FiguPe 12 in conjunction with the 
'best fit' curves obtained from Figure 4a (n = 1.80). Here 
the data points centre on the r=  1.I0, 1.14 and 1.05 curves 
for (103/p)= 1-5, 5-20 and 20-100, respectively. Whether 
the measured dependence of Vo on M W  would have 
supported the statistical mechanical approach or would 
have substantiated a different functional relationship 
cannot be determined because of the inconsistency in the 
distribution of the data. Nonetheless the information 
suggests the validity of the iso-viscosity assumptions 
made at the outset. 

To place the present results in their proper context the 
nature of certain terms in the G-DM equations needs to 
be more fully elaborated. Originally the G-DM 
equations were expressed in terms of '£,  the number of 
monomer segments 3. The term 'monomer' was defined as 
a unit which occupied one lattice site such that it normally 
included one carbon backbone atom plus the attendant 
side groups. Hence the chain length could be given in 
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Figure 11 Reduced variables plot for PM MA. Curve represents solution for equations 1 and 2 wi th n=  1.2 and r=  1.0 (cf. Figure 4d). 

2 4  2 5  2 6  2 7  Data points from: O, Beevers and White ; ~ ,  Kim et al. ; ~ ,  Kusy and Greenberg ; 0 ,  Kusy et al. , O, Kusy et al. on blends2S; 
9 3 0  3 0  ®, Pratt 2 ; (]t, Thompson on isotactic P M M A  ; and O, Thompson on syndiotact ic P M M A  
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terms of~, the number of carbon atoms in the main chain. 
Within the current terminology the chain length can be 
expressed via ~=nP where n=2 for vinyl monomers 
having two carbon atoms backbone atoms per repeat 
unit. The qualitative results of a previous study have 
demonstrated that if 'n' were restricted to a value of 2.0, 
the G-DM theory could possibly apply to only a 
relatively small number of materials s. For this reason the 
index 'n' was utilized as a variable, dependent upon the 
chemical nature of the polymer 3s. Relatively large values 
of the index, n ~ 10, were associated with flexible mo- 
lecules such as PDMS while low values, n ~ l ,  were 
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Figure 12 Dermndence of V 0 on the logarithmic reciprocal 
degree of polymerization for PS. Data from Williams 33 (A )  and as 
reinterpreted by Miller 31 (A).  Curves demonstrate the influence 
of the parameter r with n = 1,80 (cf. Figures 4a, 5 and 8) 

representative of much stiffer materials such as PaMS s. 
The quantitative techniques utilized in the present study 
have demonstrated that the G-DM relationships satisfy 
only the PS and PVC cases when n= 1.80 and 1.36, 
respectively. If a fit were to be obtained for P~MS and 
PMMA, much lower values of n would be required. 

Another approach to the G-DM equations has been 
discussed by DiMarzio and D o w e l l  a6 whereby the 
chain length could be related to 'beads' (b) and'flexes' (f). 
Using the present notation, the 'n' within the denominator 
of the first term on the right hand side of equation (1) can 
be expressed as the number of flexes per repeat unit while 
all other 'n's' refer to the number of the beads per repeat 
unit 37. Values for b and f for the four polymers of interest 
are presented in Table 1. With the exception of PMMA, 
f=2  for these polymers; however, b increases with 
increasing stiffness ranging from 3.0 for PVC to 7.4 for 
P~MS. The effect of incorporating b-f values into a 
reduced variables plot is shown in Figure 13. The curves 
demonstrate the influence of both flex and bead variation 
whereby f= 1-3 with b held constant at 1.0 and b = 1-8 
with f held constant at 2.0. For any value of (103//3) the 
results demonstrate that either an increase in f (b held 
constant) or an increase in b (f held constant) produces an 
increase in (T~/Tg®). Preliminary analysis indicates that 

Table 1 Material characterization in terms of beads and flexes* 

Polymer Beads(b) Flexes(f) 

Poly-<x-methyl styrene 7.4 2 
Polystyrene 6.1 2 
Poly(methyl methacrylate) 5.9 3, 4 
Poly(vinyl chloride) 3.0 2 

* Abstracted from Table 2 of Ref 36 
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Figure 13 Reduced variables plot in which beads (b) and flexes (f) are utilized as parameters ( r= l .0  for all curves). Compare with 
Figure 1 and Tables 1 and 2 
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Table 2 Influence of beads and flexes on fractional free volume at 3 
r o 

5 
b f VO* 

8 2 0.375--0.310 t 
6 2 0 .269- -0 .211  
4 2 0.143--0.102 
2 2 0.039--0.022 
1 3 0,007--0.002 
1 2 0.012--0.004 
1 1 0 .039 - -0 .012  

* Al l  values determined at r = 1.0 
t Values at 103/P = 0 and 100, respectively 

when the values for beads and flexes for the respective 
polymers (c.f. Table 1) are substituted into equations 1 and 
2 and the previously described statistical methodology is 
employed, no improvement in the representation of the 
data sets (c.f. Figures 8-11) is obtained. Moreover calcu- 
lations show that as b increases, Vo attains values which by 
far exceed the acceptable limits of 0.015--0.045 (c.f. Table 
2). For example, when b = 8 and f=  2, Vo varies from 0.375 
to 0.310 over the range 0 ~< 103/P ~< 100. These facts do not 
necessarily invalidate the bead-flex approach but may 
indicate that the specific values for these parameters are in 
error. Nonetheless, the successful use of these concepts 
requires the resolution of the apparent contradiction that 
the stiffer molecules (i.e., those with more beads, Table 1 
and Figure 13) behave as though they were the more 
flexible molecules (Figure 10 of Ref. 8). 
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